Защита металла и металлоизделий от коррозии есть приоритетное направление в работе ООО НПО Спектрум, в приведенном ниже разделе мы рассмотрим основные понятия, термины, классификацию коррозии и механизмы протекания коррозионных процессов. Коррозия главный враг металла и его сплавов, коррозия уничтожает до 10 % процентов всего производимого в мире металла. Ущерб в денежном эквиваленте невозможно посчитать, как нет возможности оценить и косвенные потери от простоя производств, станков, снижения производительности, преждевременных поломок оборудования подвергшегося коррозии, от нарушения нормального хода технологических процессов производства, от аварий, обусловленных снижением прочности металлических конструкций и так далее.
Итак, давайте последовательно разберемся, что такое коррозия, эрозия, окисление, старение, потеря прочности, «усталость» металла что подразумевают под этими терминами, как бороться с этим злом, как минимизировать потери и повысить эффективность, надежность и долговечность металла.
Применительно к терминам, коррозия есть разрушение металла, вызванное химическими и электрохимическими процессами, развивающимися на поверхности металла при его взаимодействии с внешней средой. Разрушению от коррозии подвержены и другие материалы, такие как бетон, строительный камень, дерево, коррозия полимеров в свою очередь называется деструкцией, но эта тема требует отдельного разговора. Наиболее знакомый вид коррозии это ржавление железа. Эрозия есть воздействие на металл таких факторов внешней среды как дождь, ветер, пыль, именно поэтому металлические арки, металлические конструкции мостов, металлические фермы, опоры и другие сооружения, где основные несущие конструкции сделаны из металла надо защищать комплексно.
Стандарты, по которым работают производители металла, основные термины касаемо самого металла и его сплавов регламентируются и прописаны в международном стандарте ISO. Вот как означает коррозия по стандарту ISO 8044 – «коррозия это физико-химическое или химическое взаимодействие между металлом (сплавом) и средой, приводящее к ухудшению функциональных свойств металла (сплава), среды или включающей их технической системы».
Чтобы понять механизмы возникновения коррозии металла и методы предотвращения коррозии, необходимо в первую очередь рассмотреть среду, в которой металл подвергается коррозии «корродирует», такая среда называется коррозионной или агрессивной средой (см. Приложение №1). В случае с металлами, когда говоря об их коррозии, имеют в виду нежелательный процесс взаимодействия металла со средой. Физико-химическая сущность изменений, которые претерпевает металл при коррозии, является окисление металла. Любой коррозионный процесс является многостадийным: Необходим контакт коррозионной среды или отдельных ее компонентов с поверхностью металла. Известно, что большинство металлов (кроме Ag, Pt ,Cu, Au) встречаются в природе в ионном состоянии: оксиды, сульфиды, карбонаты и др., называемые обычно рудами металлов. Ионное состояние более выгодно, оно характеризуется меньшей внутренней энергией. Это заметно при получении металлов из руд и их коррозии. Поглощенная энергия при восстановлении металла из соединений свидетельствует о том, что свободный металл обладает более высокой энергией, чем металлическое соединение. Это приводит к тому, что металл, находящийся в контакте с коррозионно-активной средой стремится перейти в энергетически выгодное состояние с меньшим запасом энергии. То есть можно сказать, что первопричиной коррозии является термодинамическая неустойчивость системы, состоящей из металла и компонентов окружающей (коррозионной) среды. Мерой термодинамической неустойчивости является свободная энергия, освобождаемая при взаимодействии металла с этими компонентами. Но свободная энергия сама по себе ещё не определяет скорость коррозионного процесса, т. е. величину, наиболее важную для оценки коррозионной стойкости металла. В ряде случаев адсорбционные или фазовые слои (плёнки), возникающие на поверхности металла в результате начавшегося коррозионного процесса образуют настолько плотный и непроницаемый барьер, что коррозия прекращается или очень сильно тормозится. Поэтому в условиях эксплуатации металл, обладающий большим сродством к кислороду, может оказаться не менее, а более стойким (так, свободная энергия образования окисла у Cr или Al выше, чем у Fe, а по стойкости они часто превосходят Fe).
Ниже приведены фотографии к стандарту ISO 8501-1, в соответствии с которым производится оценка степени коррозии.
Оценка первоначального состояния поверхности производится с целью определения возможной и/или необходимой степени очистки, а также выбора оптимального метода подготовки поверхности.
A. Поверхность стали, покрытая в большей степени прочно прилегающей прокатной окалиной, но практически без ржавчины.
B. Поверхность стали, начавшая ржаветь, и с которой начинает отставать прокатная окалина.
C. Поверхность стали, с которой прокатная окалина исчезла в результате ржавления или с которой она может быть удалена,
на которой наблюдаются отдельные коррозионные повреждения при обычном рассмотрении.
D. Поверхность стали, с которой прокатная окалина исчезла в результате ржавления и на которой наблюдается общая коррозия при обычном рассмотрении
Категории коррозии при атмосферных условиях окружающей среды по стандарту ISO 12944-2 и ISO 9223.
Потеря массы и толщины цинкового покрытия за год эксплуатации | Типичные примеры для умеренного климата | |||
степень | потеря массы г/м² | уменьшение толщины, мкм | снаружи | внутри |
С1 незначительная | ≤ 0,7 | ≤ 0,1 | – | Обогреваемые здания с нейтраль-ной атмосферой, например: офисы, магазины, школы, гостиницы. |
С2 слабая | > 0,7-5 | > 0,1-0,7 | Атмосфера с незначительным загрязнением. В основном сельские районы. | Неотапливаемые здания, где выступает конденсация, например: склады, спортзалы. |
С3 умеренная | > 5-15 | > 0,7-2,1 | Атмосфера города и промышленных зон. Умеренное загрязнение двуокисью серы. | Производственные помещения с высокой влажностью и слабым загрязнением воздуха, например: по производству продуктов питания, прачечные, пивоварни, молокозаводы. |
С4 сильная | > 15-30 | > 2,1-4,2 | Промышленные районы и побережье с умеренной концентрацией солей. | Химические сооружения, бассейны, домики над водой. |
С5-I очень сильная (промышленная) | > 30-60 | > 4,2-8,4 | Промышленные районы с высокой влажностью и агрессивной атмосферой. | Здания или зоны с почти постоянной конденсацией и сильным загрязнением. |
C5-M очень сильная (море) | > 30-60 | > 4,2-8,4 | Прибрежные зоны с высокой концентрацией солей. | Здания или зоны с почти постоянной конденсацией и сильным загрязнением. |
Примечание: в прибрежных районах с теплым влажным климатом потери массы или снижение толщины могут превышать границы категории С5-М. |
Коррозию, захватившую всю поверхность металла, называют сплошной. Сплошную коррозию делят на равномерную и неравномерную, в зависимости от глубины коррозионного разрушения на разных участках. При местной коррозии поражения локальны и оставляют практически незатронутой значительную (иногда подавляющую) часть поверхности. В зависимости от степени локализации различают коррозионные пятна, язвы и точки. Точечные поражения могут дать начало под поверхностной коррозии, распространяющейся в стороны под очень тонким (например, наклёпанным) слоем металла, который затем вздувается пузырями или шелушится. Наиболее опасные виды местной коррозии – межкристаллитная (интеркристаллитная), которая, не разрушая зёрен металла, продвигается вглубь по их менее стойким границам, и транскристаллитная, рассекающая металл трещиной прямо через зёрна. Почти не оставляя видимых следов на поверхности, эти поражения могут приводить к полной потере прочности и разрушению детали или конструкции. Близка к ним по характеру ножевая коррозия, словно ножом разрезающая металл вдоль сварного шва при эксплуатации некоторых сплавов в особо агрессивных растворах. Иногда специально выделяют поверхностную нитевидную коррозию, развивающуюся, например, под неметаллическими покрытиями, и послойную коррозию, идущую преимущественно в направлении пластической деформации. Специфична избирательная коррозия, при которой в сплаве могут избирательно растворяться даже отдельные компоненты твёрдых растворов (например, обесцинкование латуней).
Коррозия является химической, если после разрыва металлической связи атомы металла непосредственно соединяются химической связью с теми атомами или группами атомов, которые входят в состав окислителей, отнимающих валентные электроны металла. Химическая коррозия возможна в любой коррозионной среде, однако чаще всего она наблюдается в тех случаях, когда коррозионная среда не является электролитом (газовая коррозия, коррозия в неэлектропроводных органических жидкостях). Скорость химической коррозии чаще всего определяется диффузией частиц металла и окислителя через поверхностную плёнку продуктов коррозии (высокотемпературное окисление большинства металлов газами), иногда – растворением или испарением этой плёнки (высокотемпературное окисление W или Mo), её растрескиванием (окисление Nb при высоких температурах) и изредка – конвективной доставкой окислителя из внешней среды (при очень малых его концентрациях).
Коррозия является электрохимической, если при выходе из металлической решётки образующийся катион вступает в связь не с окислителем, а с другими компонентами коррозионной среды; окислителю же передаются электроны, освобождающиеся при образовании катиона. Такой процесс возможен в тех случаях, когда в окружающей среде существуют два типа реагентов, из которых одни (сольватирующие или комплексообразующие) способны соединяться устойчивыми связями с катионом металла без участия его валентных электронов, а другие (окислители) могут присоединять валентные электроны металла, не удерживая около себя катионы. Подобными свойствами обладают растворы или расплавы электролитов, где сольватированные катионы сохраняют значительную подвижность. Таким образом, при электрохимической коррозии удаление атома из металлической решётки (что составляет суть любого коррозионного процесса) осуществляется в результате двух независимых, но сопряжённых, связанных между собой электрическим балансом, электрохимических процессов: анодного – переход сольватируемых катионов металла в раствор, и катодного – связывание окислителем освобождающихся электронов. Отсюда следует, что процесс электрохимической коррозии можно замедлить не только путём непосредственного торможения анодного процесса, но также воздействуя на скорость катодного. Наиболее распространены два катодных процесса: разряд водородных ионов (2е + 2H+ = H2) и восстановление растворённого кислорода (4е + O2 + 4H+ = 2H2O или 4е + O2 + 2H2O = 4ОН-), которые часто называют соответственно водородной и кислородной деполяризацией.
Анодный и катодный процессы с той или иной вероятностью и в той или иной последовательности протекают в любых точках металлической поверхности, где катионы и электроны могут взаимодействовать с компонентами коррозионной среды. Если поверхность однородна, то катодные и анодные процессы равновероятны по всей её площади; в таком идеальном случае коррозию называют гомогенно-электрохимической (отмечая, таким образом, отсутствие какой-либо неоднородности в распределении вероятности электрохимических процессов в любой точке поверхности, что, конечно, не исключает термодинамической гетерогенности взаимодействующих фаз). В действительности на металлических поверхностях существуют участки с различными условиями доставки реагирующих компонентов, с разным энергетическим состоянием атомов или с различными примесями. На таких участках возможно более энергичное протекание либо анодного, либо катодного процессов, и коррозия становится гетерогенно-электрохимической.
Некоторые коррозионные среды и вызываемые ими разрушения столь характерны, что по названию этих сред классифицируются и протекающие в них коррозионные процессы.
Как правило, металлические изделия и конструкции подвергаются действию многих видов коррозии – в этих случаях говорят о действии так называемой смешанной коррозии.
Газовая коррозия – коррозия в газовой среде при высоких температурах.
Атмосферная коррозия – коррозия металла в условиях атмосферы при влажности, достаточной для образования на поверхности металла пленки электролита (особенно в присутствии агрессивных газов или аэрозолей кислот, солей и т.д.). Особенностью атмосферной коррозии является сильная зависимость ее скорости и механизма от толщины слоя влаги на поверхности металла или степени увлажнения образовавшихся продуктов коррозии.
Жидкостная коррозия – коррозия в жидких средах. По условиям воздействия жидкой среды на металл этот тип коррозии также характеризуется как коррозия при полном погружении, при неполном погружении, при переменном погружении, имеющие свои характерные особенности.
Подземная коррозия – коррозия металла в грунтах и почвах. Характерной особенностью подземной коррозии является большое различие в скорости доставки кислорода (основной деполяризатор) к поверхности подземных конструкций в разных почвах (в десятки тысяч раз).
Коррозия под напряжением развивается в зоне действия растягивающих или изгибающих механических нагрузок, а также остаточных деформаций или термических напряжений. Коррозия под напряжением как правило, ведёт к транскристаллитному коррозионному растрескиванию, которому подвержены, например, стальные тросы и пружины в атмосферных условиях, углеродистые и нержавеющие стали в паросиловых установках, высокопрочные титановые сплавы в морской воде и т. д. При знакопеременных нагрузках может проявляться коррозионная усталость, выражающаяся в более или менее резком понижении предела усталости металла в присутствии коррозионной среды. Коррозионная эрозия (или коррозия при трении) представляет собой ускоренный износ металла при одновременном воздействии взаимно усиливающих друг друга коррозионных и абразивных факторов (трение скольжения, поток абразивных частиц и т. п.). Родственная ей кавитационная коррозия возникает при кавитационных режимах обтекания металла агрессивной средой, когда непрерывное возникновение и «захлопывание» мелких вакуумных пузырьков создаёт поток разрушающих микрогидравлических ударов, воздействующих на поверхность металла. Близкой разновидностью можно считать и фреттинг-коррозию, наблюдаемую в местах контакта плотно сжатых или катящихся одна по другой деталей, если в результате вибраций между их поверхностями возникают микроскопические смещения сдвига.
Утечка электрического тока через границу металла с агрессивной средой вызывает в зависимости от характера и направления утечки дополнительные анодные и катодные реакции, могущие прямо или косвенно вести к ускоренному местному или общему разрушению металла (коррозия блуждающим током). Сходные разрушения, локализуемые вблизи контакта, может вызвать соприкосновение в электролите двух разнородных металлов, образующих замкнутый гальванический элемент, – контактная коррозия. В узких зазорах между деталями, а также под отставшим покрытием или наростом, куда проникает электролит, но затруднён доступ кислорода, необходимого для пассивации металла, может развиваться щелевая коррозия, при которой растворение металла в основном происходит в щели, а катодные реакции частично или полностью протекают рядом с ней на открытой поверхности.
Принято выделять также биологическую коррозию, идущую под влиянием продуктов жизнедеятельности бактерий и др. организмов, и радиационную коррозию – при воздействии радиоактивного излучения.